COURSE TITLE Pre-College Algebra

PREREQUISITE COMPASS placement by examination

REQUIRED MATERIALS
- 52-Week ALEKS 360 Access Code – may be purchased at the bookstore. The media-rich eTextbook is included with code. ALEKS (Assessment & Learning in Knowledge Spaces) is a computer-based learning system.
- TI-83/84 graphing calculator (More advanced models with computer algebra systems such as the TI-89 or TI-Nspire are not allowed.)
- Access to the internet & iCollege

RECOMMENDED MATERIALS
- Headphones for watching and listening to ALEKS animations and video explanations.
- 3-ring binder or spiral notebook for organizing notes.

CATALOG DESCRIPTION
This course is designed to prepare students for college level mathematics. Topics will include: real-number concepts, selected geometry concepts, linear equations and inequalities in one variable, problem solving involving linear or factorable quadratic equations as models, operations on polynomials, factoring polynomials, integral exponents, graphing linear and quadratic equations in two variables, rational expressions, function notation, integral and rational exponents, solving absolute value and quadratic equations and inequalities, solving rational and radical equations, problem solving involving linear equations, rational equations, quadratic equations, and systems of equations in two variables, writing equations of lines, operations with radicals and complex numbers, and calculator usage.

SUPPLEMENTARY MATERIALS AND HELP

For students:
- Free tutors at any GPC campus Learning and Tutoring Center http://www.gpc.edu/~gpeltc
- ALEKS Information for Students supplement
- Practice COMPASS websites http://depts.gpc.edu/~gpeltc/compass.htm http://depts.gpc.edu/~gpeltc/alpha_math.htm
- Final Exam Review in iCollege template and at http://depts.gpc.edu/~gpeltc/math0098finalexamreview.pdf
- ALEKS customer support at (714) 619-7090 http://www.aleks.com/support
- Calculators may be checked out from the GPC Library using a JAG Card (free)

For instructors:
- Syllabus Template
- Teaching Guide ALEKS Supplement
- Common Course Outline
- Comprehensive Course Guide
- ALEKS customer support at (714) 619-7090 http://www.aleks.com/support
- Math 98 Campus Reps
- iCollege Template
- ALEKS User’s Guide
- ALEKS Instructor’s Manual
- Teaching with ALEKS
- Project R.A.I.S.E. website http://depts.gpc.edu/~gpcraise/index.htm
GENERAL COURSE PURPOSE
To provide the student the necessary skills and techniques to be successful in college level mathematics as well as provide the student with skills to apply these concepts to real world problems. In this class students will learn about many basic mathematical concepts that are used in everyday life, such as fractional quantities, calculating the change of one quantity in relation to another, modeling, and proportions.

GENERAL NOTES TO THE INSTRUCTOR
This course is taught using a hands-on mastery-based approach. This new system for math classes has been shown to facilitate learning of math better than the traditional lecture methods. It also enables students to work through the curriculum only as prerequisites are mastered and finish at their individual pace. It requires active learning on behalf of the student and provides immediate feedback and prompt assistance at just the time that a student has a question. Instructors guide the learning process to encourage development of critical thinking skills.

ALEKS (Assessment and Learning in Knowledge Spaces) provides adaptive questioning to determine gaps in each student’s knowledge & directs him/her to topics he/she is most ready to learn. It encourages learning masterfully by discouraging “guess and check” tendencies and periodically assesses the student to ascertain whether topics learned are also retained. Students are allowed some directed choice of topic based on prerequisite skills and current objectives. Instructors can easily monitor student performance, and identify areas of coaching that would be of benefit to each student individually.

This course is taught in computer classrooms on all campuses throughout GPC using a standardized ALEKS course with topics defined in accordance with the Common Course Outline, including Intermediate Objectives (Modules) so that each student is moved through all course content.

If you are new to teaching with ALEKS, you will need to request an ALEKS account from Laura Lembeck (laura.lembeck@gpc.edu) and iCollege template for Math 0098 (ask your Math 98 Campus Rep for specific details for the iCollege request). Before your first class, you will need to obtain an ALEKS Course Code and Financial Aid Code (through ALEKS): do NOT put them on your syllabus; give them in class to avoid confusion. One of the best ways to learn and understand ALEKS is to use it in Student View.

Since the course is “Lab-Based,” students may assume that attendance is optional and arriving late/leaving early is not a disturbance to the classroom. It can quickly become extreme, and it is suggested that the instructor be very disciplined early on to encourage a good learning environment.

ALEKS 360 Packaging to GPC Students
ALEKS 360 means ALEKS access including a media-rich eBook. Both a 52-week ALEKS 360 standalone access and a 52-week ALEKS 360 bundled with a full-color, loose-leaf book are available through the GPC Bookstore. The 52-week ALEKS 360 standalone access is also available for purchase online.

Leave of Absence Feature
ALEKS automatically places students’ accounts on hold 21 weeks after their accounts are activated. The accounts will be kept on hold for up to 40 weeks and then will automatically reactivate unless manually reactivated sooner. To manually reactivate student accounts, have the students log in to their accounts and select the “Reactivate” button.

- If the student has already switched to the current class, select the option to continue working in your current class and follow the directions on the screen.
- If the student has not been switched to the current class, select the option to reactivate access in a new class and follow the directions on the screen.
STUDENT Best Practices in the Classroom/ Standard Operating Procedures for Students in Redesign

- Arrive on-time and stay for the entire time so as not to miss learning opportunities
- Bring Math notebook, pencils, TI83/84
- Do not use cell phones, including to listen to music
- Place personal belongings out of the way (under chairs)
- Work on ALEKS outside of class to keep pace with the current objectives. If needed, use the “Explain” button, making note of what you learn. Other tools, like videos and eText, may also be used.
- Be ready to ask questions in class based on any exercises that prove especially difficult.

INSTRUCTOR Best Practices in the Classroom

- Positively engage each student each day, discussing math concepts, learning methods, giving positive feedback and providing encouragement for better student behavior
- Remind Students to work in ALEKS outside of class, encouraging students to come to class with questions for you each day
- Encourage attendance by offering diverse learning activities in the classroom (see Mini-Lectures section below)
- Be an active tutor - don’t wait for them to come to you
- Reiterate often the grading structure of the class and the pacing required to pass the course and upcoming in-class Requested Assessments
- In Dual-Teacher Classrooms, coordinate activities to provide positive learning environment for all students
- In classrooms with a Student Development Specialist or other Project RAISE staff, coordinate with them on activities and strategies to improve student retention. Project RAISE staff will help students identify strengths and weaknesses in their study skills, and periodically advise all students individually on how to take advantage of their stronger skills, to improve their weaker skills, and to make adjustments in their study habits in order to account for the unique attributes of studying mathematics as compared with studying subjects from other disciplines.

DAY 1 Best Practices

- Students sign SIS Roster
- Assist in accessing iCollege and tour iCollege
- Learning Support Advisement (Learning Support Resources)
- Review Syllabus and grading structure, attendance expectations
- Supplemental Resources
- Introduce Mastery-based Redesign and ALEKS (Course Resources – ALEKS Video for Students)
- Demonstrate ALEKS 1st time use (ALEKS Student View – fast forward through assessment)
- Walk Students through creating an account in ALEKS (Instructor Resources – Student Registration Instructions)
- Course Code and Financial Aid Code, 2-week grace period
- Have new students start the Introduction and complete the Initial Assessment in class
- Have returning students switch their previous class to your new class and complete a Scheduled Comprehensive Assessment in class
- As the first few students finish their Initial Assessments, explain on an individual basis the ALEKS pie, Learning Mode, and the “Explain” button to get them started
- Coordinate with the Student Development Specialist or other Project RAISE staff

Enrolling Returning ALEKS Students in Their New Course

Once a returning student has logged into ALEKS, a list of previous classes will appear.
- If the student still has remaining access from a previous ALEKS access code, “Switch to a new class” will be an option, and the student should select it. From there, the students can enter your course code.
• If a student does not have access remaining from a previous ALEKS access code and is ready to purchase a new code, the student should select the “Extend access to this class” option from the most recent class’ Action button. Once the student purchases a new ALEKS access code and the old class becomes active again, the student should return to the Account Home page by clicking on the student’s name and selecting “Account Home” from the drop down list. Then follow the instructions above for students with remaining ALEKS access.

• If a student does not have access remaining from a previous ALEKS access code and is not ready to purchase a new code, the student should select “Sign up for a new class” and follow the directions on the screen.

DAY 2 Best Practices
• Students sign SIS Roster
• With ALEKS Student View, explain the ALEKS pie, Learning Mode, the “Explain” button, self-pacing with Module deadlines, generating ALEKS worksheets, and reporting features
• Coordinate with the Student Development Specialist or other Project RAISE staff

End-of-Semester Best Practice
• Conduct an in-class or online Final Exam Review session between Assessment 4 and the Final Exam.

Teaching through Mini-Lectures (an Ongoing Best Practice)
Each week of a 14-week semester, approximately two mini-lectures should be held (either face-to-face or online as appropriate for the class). Each mini-workshop is a small-group session in which an instructor teaches problem-solving technique(s) for a math topic on which students frequently experience difficulty learning, to be selected from whichever ALEKS Module is current at that time. In co-instructor teaching and learning environments, it is encouraged that each mini-workshop is taught by only one instructor, leaving the other free to assist students who are working independently, and that the mini-workshop teaching responsibility alternates among the co-instructors to equally distribute the work. It is emphasized that these mini-lectures begin very early in the semester, no later than the beginning of the 2nd week, and are a regular occurrence at nearly all class meetings thereafter. Students will then come to expect the mini-lectures as a regular component of each class meeting, encouraging participation in class as well as retention. Students are to self-select for participation in the mini-lectures, so instructors should notify their students of the upcoming schedule of topics. A list of suggested topics for the mini-lectures will be located in the iCollege template. An additional option to consider is to allow students to propose topics for mini-lectures, which if there is sufficient demand from the other students that a mini-workshop be held on a student-proposed topic, the faculty would prepare a mini-workshop to meet the demand. Below is a suggested list of mini-workshop titles to include in the course:

Order of Operations
Calculator Use
Properties of Real Numbers
Operations on Integers
Solving Linear Equations and Inequalities
Solving word problems with linear equations (including percentages)
Graphing lines and finding the Equation of a Line
Solving Systems of Equations
Exponent Rules
Factoring
Solving Quadratic Equations (Factorable)
Rational Expressions and Equations
Simplifying Radicals and Fractional Exponents
Solving Absolute Value Equations and Inequalities
Solving Quadratic Equations (Quadratic Formula)
MONITORING in-Class Scheduled Comprehensive ASSESSMENTS Best Practices

- Have students sit in places where their screens are easily visible, not with their backs to the walls.
- Hand out scratch paper and have the students put all their belongings under their chairs.
- Make sure that the only window or tab a student has open is the one being used for ALEKS.
- Make sure that all phones are silenced and put away.
- Walk around the room during assessments to look for people trying to talk, use notes, use their phones, access other websites, or cheat in any other way.
- Periodically check ALEKS during the first hour of class to see if anyone is taking the assessment outside of class by clicking on the Reports tab, selecting the Progress Bar, and looking to see if a student’s last login is in red but the student is not in the classroom; If this is the case, cancel the assessment.
- Have students show you their pies once they finish so that you can check that they actually completed the entire assessment.
- Tell students to use the restrooms before they begin an assessment, and do not allow them to leave the room during an assessment.
INSTRUCTOR’S ROLE IN THE CLASSROOM

Technology
Class time should be a less structured setting in which the instructor acts more as a facilitator to students. Instructors are strongly encouraged to allow the ALEKS software to do what it does best – assessment of current knowledge, repetitive practice, review, and assessment of retained knowledge. Instructors should become familiar with, and be able to coach students in the use of the learning tools provided through ALEKS such as the electronic version of the text book, lecture videos, examples, glossary, hyperlinks, and reports.

Remediation & Enrichment
Instructors will help students with mathematical concepts one-on-one, just as the student needs the help. The instructor may use some class time to provide remediation in small groups on current topics or engage students in enrichment activities. Students should be encouraged to view mathematics as a unified system of concepts and not as a collection of isolated topics. The instructor’s understanding of this will be invaluable to the students in your class and will be needed to help students recognize patterns, and refer to those patterns in problem solving. Terminology and reasonableness of answers should be integrated into the material in as many ways as possible.

Learning to Learn
Some students will need an Instructor’s advice regarding best methods for learning and retaining course concepts. Students may need help learning how to organize a math notebook. Taking comprehensive notes allows a student to work from a state of knowledge rather than a state of guess and check, and gives the student a place to go to study before an ALEKS-generated Review or Assessment. Notes of successful students include writing out all steps when solving a mathematical problem to avoid careless errors. Also, students should take notes on concepts and procedures that they use when solving problems, paying close attention to each question that is asked, and any notes that ALEKS gives about how it expects to receive the answer. The STUDY SKILLS chapter of the textbook has a plethora of good information for helping students in this regard.

Pacing/Using Reports
Helping students understand the importance of self-pacing in order to progress through all the course content in one semester is an important aid that the Instructor can provide. Students may need help with reading a Pie Chart, reading Bar Charts, and using the data they have generated to know how many hours of study they will need to complete the course in time, etc. Students may need to be reminded that they should plan to use class time to get help with any problems with which they are struggling and work on the easier topics outside of class. Several times during the semester (recommended around 4 weeks, 8 weeks, and 12 weeks), either the Instructor, Student Development Specialist or other Project RAISE staff will advise all students individually on their progress and what actions they need to take to successfully complete the course under the pacing scenarios which are realistic for them at that time. (i.e., How many Learning Support attempts is the student likely to use before exiting Learning Support math?) If it is anticipated that more than one semester of study will be required in order to successfully exit Learning Support mathematics, advise students that the IP, F or WF earned in Semester 1 of the 2-semester pacing scenario may adversely impact financial aid and/or scholarships and they should discuss this with the Financial Aid office.

Troubleshooting / System-Down Procedures
Sometimes students lose access to ALEKS (end of 2-week grace period, internet or host problems, etc.). See the System-Down Procedures document in the iCollege template for the specific steps to take when technological problems are encountered. Here are some ideas for handling a class period when technological problems cannot be resolved:

- Create a worksheet through your instructor account
- Book work on the topic they worked on last
- Book work on Study Skills
- Final Exam Review / COMPASS handouts
ALEKS

ALEKS (Assessment & Learning in Knowledge Spaces) is a web-based, artificially intelligent assessment and learning system. ALEKS uses adaptive questioning to quickly and accurately determine exactly what each student knows and doesn’t know about basic mathematics and then provides instruction on the topics he/she is most ready to learn. ALEKS was originally developed in 1999 by a team of cognitive scientists and software engineers at the University of California-Irvine, with funding from the National Science Foundation.

ALEKS Pie Chart
The color-keyed pie chart represents all the course topics and will automatically update based on each student’s learning and assessment results throughout the course. Each slice of the pie chart represents a part of the curriculum and is filled in with color (from the center outward) to show the extent of current mastery in that area. Moving the mouse pointer around the slices will cause a list of “currently-ready” topics to expand. Progress in learning causes new topics to become available. Filling in the slices of the pie chart is accomplished by demonstrating mastery of the course curriculum.

ALEKS Learning Mode
Most of a student’s time in ALEKS will be spent in Learning Mode working practice problems. Clicking on any of the pie slices and choosing a topic takes the student to the Learning Mode. In most cases only a few problems per topic will be enough to grasp of the concept. ALEKS gives immediate feedback on answer correctness, as well as possibilities for mistakes made, in which case, ALEKS gives extra practice. ALEKS is constantly presenting new topics as well as reviewing old topics, giving a student practice retrieving what he/she has already learned.

Timing Out: ALEKS will automatically terminate a session after 30 minutes if there has been no activity. There is no warning message before the session is terminated. By simply logging back on, ALEKS will take the student back to where he/she left off.

Learning Sequence Log: In the Time and Topic report, select a student’s name to see how much time that student worked in ALEKS each day in the selected range of dates as well as how many topics the student attempted and the number of topics the student mastered. By clicking on a particular date, a learning sequence log, that indicates which topics the student worked on and how the student answered questions or if the student viewed an explanation, will appear. By clicking the link to either “Explain”, “Wrong”, “Correct”, or “Added to Pie,” it is possible to see the exact question the student worked as well as the answer the student submitted.

ALEKS Assessments
New students begin the course by taking an Initial Assessment to determine their current knowledge base, the results of which are shown in the pie chart. Returning students begin the course by taking an in-class Scheduled (Comprehensive) Assessment, which functions similarly to an Initial Assessment. No notes may be used for these first-day diagnostic assessments. Students may use calculators (up to TI-84 or equivalent, but NO cell phones) on all Assessments and at all times throughout the course. After the student works in the “Learning Mode” for a significant amount of time (10 hours or 20 topics), ALEKS will automatically generate a Progress Assessment, which is a chance to prove retention of recently learned topics or to use his/her notes to review for future in-class Scheduled Assessments. If the student makes mistakes or selects “I do not know” on questions from topics which had been previously mastered, he/she may lose mastery credit for some topics in the pie (which would then have to be re-mastered). Four (4) in-class comprehensive Assessments have been scheduled into each course. These dates are listed in the syllabus template.

Incomplete Scheduled Assessments: If a student does not finish one of the four scheduled assessments during class time, the student must click “I don’t know” on all the remaining questions in the assessment, else the assessment should be cancelled by the instructor and a grade of zero assigned. Because of this, it is good to monitor students’ progress on the assessments and advise students about their pacing as necessary.
Cancelling an ALEKS assessment: Instructors should not cancel automatic ALEKS assessments. In-class scheduled assessments can be cancelled for individual students by doing the following:

In the Advanced Instructor Module,
1. Select the student from the list in the top right.
2. Click on the Assessments tab.
3. Click “Cancel Current Assessment”.
4. Confirm – The student then sees a message that their assessment has been cancelled and receives an ALEKS email about it.

If you need to cancel an assessment that a student has already completed, then contact ALEKS Support at 714-619-7090 or http://support.aleks.com/ to have the student’s pie reset to its previous state.

ALEKS Modules (Objectives)
Topics are grouped by **Modules (Objectives).** Students can see and are free to work on topics from all past Modules, provided that those topics are ready-to-learn. A list of the topics in each Module, as well as the corresponding textbook section for each topic, is available in the iCollege template.

Relationship Between Topics, Pie Slices, and Modules (Objectives): For a list of all the topics in the ALEKS pie listed by pie slice, in order of the modules they are found in, or alphabetically, see: ALEKS Topics Correlated. For more information on ALEKS, see the following: Teaching Guide ALEKS Supplement.

PACING GUIDE
This pacing guide is subject to change.

<table>
<thead>
<tr>
<th>Week</th>
<th>Module(s)</th>
<th>Contents</th>
<th>Total # of topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Modules 1, 2</td>
<td>Arithmetic, Order of Operations</td>
<td>22</td>
</tr>
<tr>
<td>Week 2</td>
<td>Module 2</td>
<td>Order of Operations</td>
<td>51</td>
</tr>
<tr>
<td>Week 3</td>
<td>Module 3</td>
<td>Linear Equations</td>
<td>76</td>
</tr>
<tr>
<td>Week 4</td>
<td>Modules 4, 5</td>
<td>Linear Inequalities, Lines</td>
<td>105</td>
</tr>
<tr>
<td>Week 5</td>
<td>Module 5</td>
<td>Lines</td>
<td>134</td>
</tr>
<tr>
<td>Week 6</td>
<td>Module 6</td>
<td>Systems</td>
<td>150</td>
</tr>
<tr>
<td>Week 7</td>
<td>Modules 6, 7</td>
<td>Systems, Exponents and Polynomials</td>
<td>162</td>
</tr>
<tr>
<td>Week 8</td>
<td>Module 7</td>
<td>Exponents and Polynomials</td>
<td>174</td>
</tr>
<tr>
<td>Week 9</td>
<td>Module 7</td>
<td>Exponents and Polynomials</td>
<td>182</td>
</tr>
<tr>
<td>Week 10</td>
<td>Module 8</td>
<td>Rational Equations</td>
<td>212</td>
</tr>
<tr>
<td>Week 11</td>
<td>Module 9</td>
<td>Rational Exponents / Radicals</td>
<td>224</td>
</tr>
<tr>
<td>Week 12</td>
<td>Module 9</td>
<td>Rational Exponents / Radicals</td>
<td>236</td>
</tr>
<tr>
<td>Week 13</td>
<td>Modules 9, 10</td>
<td>Rational Exponents / Radicals, Absolute Value / Quadratics</td>
<td>248</td>
</tr>
<tr>
<td>Week 14</td>
<td>Module 10</td>
<td>Absolute Value / Quadratics</td>
<td>260</td>
</tr>
</tbody>
</table>

Students taking 2 semesters to complete Math 98 should complete at least Modules 1-6 in the first semester. (1st Semester IP/F/WF may adversely impact financial aid and/or scholarships; students should discuss the implications with the Financial Aid Office.)
EVALUATION - The evaluation method will be consistent college-wide.

Course Evaluation
Your final grade for the course will be calculated according to the following guidelines:

- **ALEKS SCHEDULED ASSESSMENTS (40%)**: There will be four (4) in-class Scheduled Assessments used to determine this portion of your grade, all of which will be comprehensive ALEKS assessments. Of the four assessments, the highest percentage of topics mastered on an in-class Scheduled Assessment will be used in the calculation of your grade. Notes will not be allowed on the in-class Scheduled Assessments. Calculators (but not cell phones) may be used during all in-class Scheduled Assessments. If you do not finish a scheduled assessment during class time, you must click “I don’t know” on all the remaining questions in the assessment, else your incomplete assessment will be cancelled and a grade of zero received. The dates for these four assessments are listed in the Important Dates section. **There are no make-ups for missed in-class Scheduled Assessments.**

- **ALEKS WORKSHEETS (10%)**: Each student is to generate, print and complete an ALEKS review worksheet within one week of each in-class Scheduled Assessment, which must be turned in during class on the in-class Scheduled Assessment date. Each worksheet will be graded (out of 25 points) for mathematical and notational correctness. Any time after the 2nd in-class Scheduled Assessment, up to a week before the 4th in-class Scheduled Assessment, each student may optionally submit one additional ALEKS worksheet for grading. Of the four required and one optional ALEKS worksheets, the highest four grades will be added together and the total (out of 100 points) will determine this portion of the course grade. **Late worksheets will not be accepted.**

- **ALEKS PIE (10%)**: The percentage of topics learned in ALEKS as of the final exam start time will be used to calculate the ALEKS Pie grade.

- **CLASS PARTICIPATION (10%)**: Students must actively participate in the class setting. For online courses this involves regular participation in course discussion boards. For face-to-face courses this involves being engaged in class and working in ALEKS, which may include weekly ALEKS time, mastering additional ALEKS topics, asking questions in class, and/or participating in group Mini-Lectures. Students will earn 8 points for each week of class participation (4 points per day for face-to-face classes that meet two times per week) up to a maximum of 100 points.

- **FINAL EXAM (30%)**: All students are eligible to take the cumulative final exam on the last day of class, regardless of how many topics they have mastered. Students should bring their calculator, as cell phones WILL NOT be allowed to be used as calculators. Sharing a calculator during the exam is not permitted.

COURSE COMPLETION PROCEDURES

Early Course Completion Procedures
The following applies only to fall and spring semesters. Students cannot exit the course early in summer without prior department chair approval.

If a student completes 100% of the ALEKS pie before the end of the semester, the instructor will schedule an in-class comprehensive assessment for that individual student. If the student scores less than 90%, then he/she will be allowed to progress back to 90% or more of the pie and have another in-class comprehensive assessment scheduled. When at least 90% is reached on the in-class scheduled comprehensive assessment, the student may take the Final Exam early. Taking the Final Exam early forfeits the right to take it at the end of the semester. After completing the final exam, the student’s course average will be calculated using the highest in-class comprehensive assessment score as the ALEKS Assessment grade, assigning full credit to all future Class Participation and ALEKS Worksheet assignments, and calculating the ALEKS Pie grade as defined in the Course Evaluation section. If a course average between 70% and 79% is earned, then the student will be allowed to take the COMPASS Exit Exam (and one Retest) before the end of the semester. If a course average of 80% or above is earned, then the student is exempt from taking the COMPASS Exit Exam. The entire process (including the Exit Exam) must be completed by two weeks before the regular final exam date for the class, otherwise the student must complete the remainder with the rest of the class. (The actual deadline...
date will be given each semester in the course syllabus.)

Compass Eligibility
Each student’s Compass Eligibility must be posted in iCollege by midnight on the day of the Final Exam. Any student earning a C grade in the course component is eligible to take the COMPASS Exit Exam. Any student earning an A or B grade in the course is exempt from taking the COMPASS Exit Exam. (Students whose SAT math score is 400 or higher or ACT math score is 17 or higher with no CPC deficiencies in math are exempt from the COMPASS – this exemption is noted in SIS.)

Students should be reminded about the COMPASS Exit Exam requirement at the time of the Final Exam and that their eligibility will be posted in iCollege by midnight. Each student’s COMPASS Eligibility grade item in iCollege should be assigned one of the following values according to these guidelines:

EXEMPT – Either 1) the student’s course average is at least 80% (the “AB exemption”), or 2) the student has a course average in the range 70-79% AND is listed as exempt in SIS. The student has passed the course and does not need to take the COMPASS Exit Exam.

YES – The student has a course average in the range 70-79% AND is not listed as exempt in SIS. A passing score of at least 37 must be earned on the COMPASS Exit Exam (or Retest) to pass the course with a C. Without a passing COMPASS score, the student’s grade is reported as an IP and s/he must retake Math 98.

NO – The student’s course average is below 70%. The student does not take the COMPASS Exit Exam and must retake Math 98.

Some students may need to be instructed as to how to access the iCollege gradebook, so they will know if they are eligible to take Compass. *Any questions regarding the exit exam should be directed to the department chair.*

Posting Students’ Course Grades
Instructors should not post course grades in iCollege, as the grade only becomes official for most students AFTER they have passed the COMPASS Exit Exam with a score of at least 37.

PROJECT R.A.I.S.E.

About Project R.A.I.S.E.
Project R.A.I.S.E.: Raising Achievement and Increasing Success in Education, focuses on increasing academic success, retention and graduation rates of Math 0098 students by redesigning Learning Support into a mastery module approach, providing academic coaching and mentoring, and comprehensively evaluating student success so as to continuously improve the Learning Support Mathematics course redesign and the academic coaching and mentoring strategies. Project R.A.I.S.E. is funded by a grant through the Department of Education Predominantly Black Institutions Formula Grant Program.

Goals of Project R.A.I.S.E.
The participant goal is to improve the higher education success rates of African American males. The project goal is to improve the success rates of all Learning Support students, thereby impacting vast numbers of students from disadvantaged backgrounds including all African American students. To help facilitate these goals, Project R.A.I.S.E has hired Student Development Specialists (SDS) for Clarkston, Decatur and Dunwoody campuses and Academic Laboratory Faculty Supervisors (ALFS) at Alpharetta and Newton campuses to provide academic workshops, mentoring and coaching.

Enrolling Student Development Specialist (SDS) and Academic Laboratory Faculty Supervisor (ALFS)
Before the beginning of the semester, enroll the campus’ SDS or ALF in your iCollege/D2L section by doing the following:
1. Click “Classlist” on the navigation bar
2. Select “Add Participants” and then “Add an existing user”
3. In the search box, type the SDS’s or ALFS’s user ID (If you are not sure what the users ID is, search for them by last name)
4. Click on “Search” and then click to check the box beside the correct person’s name
5. Select the role of Template Editor from the dropdown menu
6. Click on “Enroll Selected Users”

Throughout the semester, the SDS’s and ALFS’s will be holding academic workshops in the classroom for students. Talk with your campus’ SDS or ALFS about the best times to schedule these workshops.

EFFECTIVE: Fall 2013