Some Important Series

\[\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ for } |x| < 1 \]
\[\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \]
\[\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \]
\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]
\[\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)} \text{ for } |x| \leq 1 \]

Binomial Series

\[(1 + x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n \text{ for } |x| < 1 \text{ where } \binom{k}{0} = 1 \text{ and } \binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!} \text{ for } n \geq 1 \]

Geometric Series

\[\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \text{ for } |r| < 1, \text{ diverges for } |r| \geq 1 \]

Harmonic Series/p-Series

\[\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges.} \]
More generally \[\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ diverges if } p \leq 1 \text{ and converges if } p > 1 \]

Power Series Centered at a:

\[\sum_{n=0}^{\infty} c_n (x-a)^n \]

Taylor Series/Maclaurin Series:

If a function \(f \) has a power series representation at \(a \), then it can be written in the form

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \]

This is called the Taylor series of \(f \) at \(a \).

If \(a = 0 \), then this is a Maclaurin series: \[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \]
Convergence Tests

n-th Term Test: \[\sum_{n=1}^{\infty} a_n \text{ diverges if } \lim_{n \to \infty} a_n \neq 0 \text{ or } \text{DNE} \]

Integral Test: If \(f(x) \) continuous, positive, decreasing for \(x \in [1, \infty) \) and \(a_n = f(n) \)
\[\Rightarrow \text{If } \int_1^{\infty} f(x)dx \text{ converges (diverges), then } \sum_{n=1}^{\infty} a_n \text{ converges (diverges)} \]

\(a_n \) and \(b_n \geq 0 \) for all \(n \), then

Comparison Test:
1) \(\sum b_n \) converges and \(a_n \leq b_n \) for all \(n \) \(\Rightarrow \sum a_n \) converges
2) \(\sum b_n \) diverges and \(a_n \geq b_n \) for all \(n \) \(\Rightarrow \sum a_n \) diverges

Limit Comparison Test:
If \(a_n, b_n > 0 \) and \(\lim_{n \to \infty} \frac{a_n}{b_n} = c \) \(\neq 0, (c \text{ finite}) \)
then \(\sum a_n \) and \(\sum b_n \) both converge or both diverge

Alternating Series Test:
\[b_n > 0 \]
\[b_{n+1} \leq b_n \]
\[\lim_{n \to \infty} b_n = 0 \]
\[\Rightarrow \sum (-1)^{n-1} b_n \text{ converges} \]

Absolute Convergence Test: \(\sum |a_n| \) converges \(\Rightarrow \sum a_n \) converges

Ratio Test: Let \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \). Then
\[L < 1 \Rightarrow \sum a_n \text{ is absolutely convergent} \]
\[L > 1 \text{ or } L = \infty \Rightarrow \sum a_n \text{ diverges} \]
\[L = 1 \Rightarrow \text{inconclusive} \]

Root Test: Let \(a_n \geq 0 \) and \(\lim_{n \to \infty} \sqrt[n]{a_n} = L \). Then
\[L < 1 \Rightarrow \sum a_n \text{ converges} \]
\[L > 1 \text{ or } L = \infty \Rightarrow \sum a_n \text{ diverges} \]
\[L = 1 \Rightarrow \text{inconclusive} \]