Calculus III: Formulas: Curvature and Acceleration in 3 Dimensions

\(\mathbf{r}(t) = <x(t), y(t), z(t)> \), \(\mathbf{r}'(t) = \mathbf{v}(t) = <x'(t), y'(t), z'(t)> \), \(\mathbf{v}(t) = |\mathbf{v}(t)| \),
\(\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t) \)

1. **Arc Length** \(s \): \(s(t) = \int_a^t \sqrt{(x'(u))^2 + (y'(u))^2 + (z'(u))^2} \, du = \int_a^t |\mathbf{r}'(u)| \, du \)
 a. From \(t = a \) to \(t = b \): \(s = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, dt = \int_a^b |\mathbf{v}(t)| \, dt \)
 c. So \(\frac{ds}{dt} = |\mathbf{r}'(t)| = |\mathbf{v}(t)| \)
2. **Unit Tangent Vector** \(\mathbf{T} \): \(\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \)
3. **Curvature** \(\kappa \):
 a. \(\kappa = \frac{|d\mathbf{T}|}{ds} = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} \)
 b. For a function \(y = f(x) \): \(\kappa = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}} \)
4. **Principal Unit Normal Vector** \(\mathbf{N} \): \(\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \)
 a. \(\mathbf{N} \) is perpendicular to the unit tangent vector \(\mathbf{T} \) and points in the direction in which the curve is bending.
 b. **Using acceleration**: \(\mathbf{N} = \frac{\mathbf{a} - \mathbf{a}_T \mathbf{T}}{a_N} \)
5. **Binormal Vector**: \(\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) \)
6. **Normal and Osculating Planes**:
 a. The **normal plane** is the plane that contains \(\mathbf{N} \) and \(\mathbf{B} \).
 b. The **osculating plane** contains \(\mathbf{T} \) and \(\mathbf{N} \).
 c. The circle in the osculating plane that most approximates the curve at the point \(C \) (same curvature and tangent and its center lies along \(\mathbf{N} \)) is called the **osculating circle**. Its radius \(\rho \) is called the **radius of curvature** and is \(\rho = \frac{1}{\kappa} \) the reciprocal of the curvature of the curve at point \(C \).
7. **Acceleration** \(\mathbf{a} = \frac{dv}{dt} \mathbf{T} + \kappa v^2 \mathbf{N} = a_T \mathbf{T} + a_N \mathbf{N} \)

a. **Tangential Component of Acceleration**: \(a_T = \frac{dv}{dt} = \frac{v \cdot \mathbf{a}}{v} = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{\left| \mathbf{r}'(t) \right|} \)

b. **Normal Component of Acceleration**: \(a_N = \kappa v^2 = \frac{\left| \mathbf{r}'(t) \times \mathbf{r}''(t) \right|}{\left| \mathbf{r}'(t) \right|} \)